
Linux Optimization

​ ​ ​
​ ​ ​ ​ ​

Table of content

-​ optimize Linux services

-​ View Service Status

-​ Enable/Disable Services

-​ Startup Priorities

-​ Resource Limits

-​ Journal Control

-​ Restart Policies

-​ Slice Configuration

-​ Timer Units

-​ optimize Installed Linux with commands

-​ Tools 4 optimization

-​ Linux Kernel optimize Parameters for Desktop Systems

-​ Linux Kernel optimize Parameters for Embeded Devices

-​ Optimize Linux with tuned

-​ Systemd optimization for Embeded Linux

optimize Linux services

Systemd is the init system used by many modern Linux distributions, and it
comes with its own set of tools for managing services. Here are some tips for
optimizing services using systemd:

View Service Status:

Use systemctl to view the status of services.

sudo systemctl status servicename

Enable/Disable Services:
Disable unnecessary services to improve boot time.

sudo systemctl disable servicename

Enable services when needed.

sudo systemctl enable servicename
Startup Priorities:

Adjust the startup priority of services using systemctl.

Check dependencies and order

sudo systemctl list-dependencies --after

Change startup priority

sudo systemctl edit --full servicename

In the service file, you can adjust the Before and After directives to control
startup order.

Resource Limits:

Set resource limits for services using systemd resource control.

Example: Set CPU limits

sudo systemctl edit --full servicename

Add the following lines:

[Service]​
CPUQuota=20%​
This example limits the service to using 20% of the CPU.

Journal Control:

Configure the journal settings to control logging and disk usage.

View journal status​
sudo journalctl --disk-usage​
​
Limit the journal size​
sudo systemctl edit --full systemd-journald

Add the following lines:

[Journal]​
SystemMaxUse=50M​
This example limits the journal size to 50 megabytes.

Restart Policies:

Define restart policies for services in the service file.

sudo systemctl edit --full servicename

Add the following lines:

[Service]

Restart=always

This example restarts the service always, regardless of the exit status.

Slice Configuration:
Use slices to group and manage services with similar resource requirements.

Create a slice configuration​
sudo systemctl edit --full slice-name

Add the following lines:

[Slice]​
CPUQuota=20%

Assign services to the slice in their service files.

Timer Units:
Use timer units to schedule services.

Create a timer configuration​
sudo systemctl edit --full timer-name

Add the following lines:

[Timer]​
OnCalendar=daily​
This example runs the associated service daily.

Remember to reload the systemd manager after making changes:

sudo systemctl daemon-reload

Always test changes in a safe environment before applying them to a production
system. Also, refer to the systemd documentation and man pages for detailed
information on configuration options and best practices.

optimize Installed Linux with commands

Optimizing a Linux system involves a combination of fine-tuning configurations,
managing services, and ensuring efficient resource utilization. Here are some
commands and tips to help optimize an installed Linux system:

Update System Packages:

Keep the system up to date with the latest security patches and updates.

Debian/Ubuntu​
sudo apt update && sudo apt upgrade

Red Hat/CentOS

sudo yum update

Remove Unnecessary Packages:

Identify and remove unnecessary packages that are installed on the system.

Red Hat/CentOS​
sudo yum update

Red Hat/CentOS​
sudo yum autoremove

Check Disk Space:

Monitor disk space usage to prevent potential issues.

df -h

Optimize Disk I/O:

Use iotop to identify processes causing high disk I/O.

sudo iotop

Check Memory Usage:

Use free or htop to check memory usage.

free -m

Install and run htop

sudo apt install htop # For Debian/Ubuntu

sudo yum install htop # For Red Hat/CentOS

htop

CPU Performance:

Monitor CPU usage with top or htop.

top

Or install and run htop
Review and Disable Unnecessary Services:

Identify and disable unnecessary services.

List all services

systemctl list-unit-files --type=service

Disable a service

sudo systemctl disable servicename

Optimize Startup Applications:

Review and disable unnecessary startup applications.

Check startup applications

sudo systemctl list-unit-files --type=service | grep enabled

Check for Failed Services:

Identify and address any failed services.

systemctl --failed
Network Configuration:

Optimize network settings and use tools like iperf to measure network
performance.

systemctl --failed

sudo apt install iperf # For Debian/Ubuntu

sudo yum install iperf # For Red Hat/CentOS

Measure network performance

iperf -c server_ip

Check for Open Ports:

Review open ports to ensure only necessary services are accessible.

ss -tuln

Kernel Tuning:

Adjust kernel parameters if needed.

View current kernel parameters

sysctl -a

Edit sysctl.conf to set parameters

sudo vi /etc/sysctl.conf
Example sysctl.conf entries:

Disable IPv6​
net.ipv6.conf.all.disable_ipv6 = 1​
​
Increase file descriptors limit​
fs.file-max = 65535

Apply changes with

sudo sysctl -p

These commands provide a starting point for optimizing a Linux system.
Depending on your specific use case and distribution, additional steps may be
necessary. Always test changes in a controlled environment before applying
them to a production system.

Tools 4 optimization

There are several tools available for optimizing and monitoring Linux systems.
Here are some commonly used tools:

htop:

An interactive process viewer and system monitor.

sudo apt install htop # For Debian/Ubuntu

sudo yum install htop # For Red Hat/CentOS

htop

iotop:

A top-like utility for displaying I/O usage of processes.

sudo apt install iotop # For Debian/Ubuntu

sudo yum install iotop # For Red Hat/CentOS

iotop

iftop:

A real-time console-based network bandwidth monitoring tool.

sudo apt install iftop # For Debian/Ubuntu

sudo yum install iftop # For Red Hat/CentOS

iftop

NetHogs:

A small 'net top' tool that shows the bandwidth used by individual processes.

sudo apt install nethogs # For Debian/Ubuntu

sudo yum install nethogs # For Red Hat/CentOS

sudo nethogs
vmstat:

A system monitoring tool that provides information about processes, memory,
paging, block I/O, traps, and CPU activity.

vmstat 1 # Updates every 1 second

sar:

Collects, reports, or saves system activity information.

sudo apt install sysstat # For Debian/Ubuntu

sudo yum install sysstat # For Red Hat/CentOS

sar

iostat:

Reports CPU statistics and input/output statistics for devices, partitions, and
network filesystems.

iostat

Linux Kernel optimize Parameters for Desktop Systems

Optimizing the Linux kernel for a desktop system involves adjusting various
parameters to enhance responsiveness, reduce latency, and improve overall
performance. Here are some kernel parameters that you can consider tuning for
a desktop system. As always, it's recommended to test changes in a controlled
environment before applying them to a production system.

Swappiness:

Adjust the swappiness parameter to control the tendency of the kernel to move
processes out of physical memory and onto the swap space.

sudo sysctl vm.swappiness=10

Dirty Ratio and Background Ratio:

Adjust the dirty ratio and dirty background ratio to control how much memory
the kernel can use for caching data before writing it to disk.

sudo sysctl vm.dirty_ratio=10

sudo sysctl vm.dirty_background_ratio=5

I/O Scheduler:

Choose an appropriate I/O scheduler for your disk. For desktop systems with
traditional hard drives, the cfq scheduler is often recommended.

echo cfq | sudo tee /sys/block/sdX/queue/scheduler
Replace sdX with your actual disk identifier.

IRQ Balance:

Disable IRQ balance for desktop systems to prevent automatic distribution of
interrupts.

sudo systemctl disable irqbalance

Preemption Model:

Choose a preemption model that suits desktop responsiveness. For low-latency
desktop systems, you might prefer the desktop preemption model.

echo desktop | sudo tee

/sys/kernel/mm/transparent_hugepage/enabled

Timer Frequency:

Adjust the timer frequency to improve desktop responsiveness.

echo 1000 | sudo tee /sys/class/timer/timer0/hertz

Graphics Performance:

Depending on your graphics card and driver, you may need to adjust settings for
optimal performance. For example, for NVIDIA graphics cards, consider using
the proprietary NVIDIA driver and adjusting settings using the NVIDIA X Server
Settings tool.

CPU Governor:

Set the CPU governor to a performance mode to ensure that the CPU runs at
higher frequencies for better responsiveness.

echo performance | sudo tee

/sys/devices/system/cpu/cpu*/cpufreq/scaling_governor

Transparent Huge Pages:

Disable Transparent Huge Pages to reduce memory management overhead.

echo never | sudo tee

/sys/kernel/mm/transparent_hugepage/enabled​
Swapiness:

Set a lower value for swappiness to reduce swap usage.

sudo sysctl vm.swappiness=10

NMI Watchdog:

Disable the NMI watchdog.

echo 0 | sudo tee /proc/sys/kernel/nmi_watchdog

Make sure to adapt these parameters based on your specific hardware and use
case. It's crucial to test changes in a non-production environment to ensure they
improve performance without causing instability. Additionally, the availability and
applicability of some parameters may vary depending on your Linux distribution
and kernel version.

Linux Kernel optimize Parameters for Embeded Devices

Optimizing the Linux kernel for embedded devices involves adjusting parameters
to achieve efficient resource utilization and enhance performance within the
constraints of embedded systems. Here are some considerations for optimizing
the Linux kernel on embedded devices:

Kernel Configuration:

Configure the kernel to include only necessary modules and features for your
embedded device. Use a minimal configuration to reduce the kernel size.
Use the make menuconfig or make xconfig commands to configure the kernel.
Kernel Compression:

Choose an appropriate kernel compression method to reduce the size of the
kernel image. Options include gzip, bzip2, and LZMA.
Configure this during the kernel build process.

Kernel Command Line:

Optimize the kernel command line parameters based on the requirements of
your embedded device. Remove unnecessary options and set parameters like
console settings and memory allocation.

I/O Scheduler:

Choose the I/O scheduler that best suits the characteristics of your storage
medium. For embedded systems, the noop scheduler is often suitable for
flash-based storage.

echo noop > /sys/block/mmcblk0/queue/scheduler
CPU Governor:

Set the CPU governor to a power-efficient mode suitable for embedded systems.
Options include powersave or ondemand for conserving power.

echo powersave >

/sys/devices/system/cpu/cpu0/cpufreq/scaling_governor

Memory Settings:

Adjust memory-related parameters to optimize for the limited memory available
on embedded devices.

sudo sysctl -w vm.swappiness=1

Transparent Huge Pages:

Disable Transparent Huge Pages to save memory.

echo never > /sys/kernel/mm/transparent_hugepage/enabled

Network Settings:

Configure network settings based on the specific requirements of your
embedded device. Disable unnecessary network protocols and features.
Adjust TCP parameters to optimize network performance as needed.
Timer Frequency:

Adjust the timer frequency to balance power consumption and responsiveness.

echo 100 > /sys/class/rtc/rtc0/max_user_freq

Console Output:

Optimize console output for embedded devices. Reduce verbosity and use a
minimal console configuration.

quiet console=ttyS0,115200

Device Drivers:

Only include necessary device drivers for your embedded hardware. Disable
unnecessary drivers to reduce kernel size.
Optimize driver configurations to match the specific requirements of your
embedded system.

Power Management:

Enable power management features suitable for your embedded device, such as
CPU frequency scaling, suspend/resume support, and other power-saving
options.
File System:

Choose a file system optimized for flash storage, such as UBIFS or JFFS2 for
NAND-based storage, or F2FS for NAND and NOR flash.

Security Features:

Disable security features that may not be necessary for your embedded use
case to reduce overhead.
When optimizing the Linux kernel for embedded devices, it's essential to
carefully consider the specific requirements and constraints of the target
hardware. Additionally, thorough testing in a controlled environment is crucial to
ensure stability and functionality. The exact parameters and options may vary
depending on the specific Linux distribution and kernel version used in your
embedded system.

Optimize Linux with tuned

The tuned utility in Linux is designed to automatically adapt the system's
settings based on the chosen profile. It can help optimize performance, power
consumption, or a balance between the two. Here's a basic guide on how to use
tuned to optimize a Linux system:

Install tuned:

sudo apt-get install tuned # For Debian/Ubuntu

sudo yum install tuned ​# For Red Hat/CentOS

Start and Enable tuned:

sudo systemctl start tuned

sudo systemctl enable tuned

List Available Profiles:

tuned-adm list

Choose a Profile:

Select an appropriate profile based on your system's use case. For example:

sudo tuned-adm profile throughput-performance # For

performance

sudo tuned-adm profile powersave ​ # For power saving

sudo tuned-adm profile latency-performance ​ # For low-latency

View Active Profile:

tuned-adm active
This command will show you the currently active profile.

Customize a Profile (Optional):

You can create or modify a profile based on your specific needs. Profiles are
stored in the /etc/tuned/ directory.

sudo vi /etc/tuned/my_custom_profile
Edit the file according to your requirements. For example, you can adjust kernel
parameters, disk I/O settings, CPU frequency scaling, etc.

Apply Custom Profile:

sudo tuned-adm profile my_custom_profile

! Replace my_custom_profile with the name of your custom profile.

Monitor tuned:

Check the status of tuned and monitor its activity.

sudo systemctl status tuned

sudo journalctl -u tuned

Ensure there are no errors or warnings related to tuned.

Disable tuned (Optional):

If you want to return to the default settings without tuned, you can disable it.

sudo systemctl stop tuned

sudo systemctl disable tuned

Keep in mind that tuned is most effective when the system has variable
workloads or power requirements. For static or specialized environments,
manual tuning might be more appropriate.

Always test any changes, especially custom profiles, in a controlled environment
before applying them to production systems. Additionally, make sure to consult
the documentation of your specific Linux distribution, as tuned behavior may
vary.

Systemd optimization for Embeded Linux

Optimizing systemd for embedded Linux systems involves configuring its
various components to minimize resource usage, enhance boot time, and tailor
the system to the specific needs of embedded devices. Here are some tips for
optimizing systemd on embedded Linux:

Minimize Services:

Disable unnecessary services that are not required for the embedded system's
functionality. Use the systemctl command to list and disable services.

List all services

sudo systemctl list-unit-files --type=service

Disable a service

systemctl disable servicename

Reduce Startup Time:

Analyze and optimize the startup time using systemd-analyze. Identify critical
paths and consider adjusting dependencies.

Analyze startup time

sudo systemd-analyze blame

Parallelize Service Startup:

Use the DefaultDependencies=no option in service unit files to parallelize service
startup, speeding up the boot process.

[Unit]​
Description=Your Service​
After=network.target​
Wants=network.target​
DefaultDependencies=no

Use tmpfs for Temporary Data:

Move temporary data to tmpfs (RAM-based filesystem) to reduce disk I/O and
improve performance.

[Service]​
ExecStartPre=/bin/mount -t tmpfs tmpfs /your/tmpfs/directory​
ExecStart=/your/executable​
ExecStopPost=/bin/umount /your/tmpfs/directory

Disable Journaling or Optimize Journal Configuration:

Disable journaling or optimize the journal configuration to reduce disk I/O.

[Journal]​

Storage=volatile​
RuntimeMaxUse=30M

Optimize Timer Accuracy:

Improve timer accuracy by configuring timer_slack_nsec in the [Manager] section
of system.conf.

[Manager]​
TimerSlackNSec=50000

Minimize Logging:

Reduce the verbosity of logs to minimize disk I/O and storage usage. Adjust the
LogLevel in journald.conf.

[Journal]​
LogLevel=info

Use systemd-readahead:

systemd-readahead can be used to optimize the system's disk I/O during boot.
This tool reads files sequentially into memory to reduce seek time.

sudo systemctl enable systemd-readahead-collect.service

sudo systemctl enable systemd-readahead-replay.service

Optimize Swap Usage:

Adjust swap settings in systemd-swap to optimize memory usage.

[Swap]​
SwapFC=1

Enable and start systemd-swap service:

sudo systemctl enable systemd-swap

sudo systemctl start systemd-swap

Kernel Parameters:

Set kernel parameters using the sysctl command to optimize resource usage.
These settings can be placed in /etc/sysctl.conf.

sudo sysctl -w kernel.param=value

Optimize Network Services:

Disable unnecessary network services or daemons that are not required for the
embedded system.

Use systemd-nspawn for Containerization (Optional):

systemd-nspawn can be used to run services in containers, isolating them from
the host system and potentially improving security and resource utilization.
These are general guidelines, and the specific optimizations may vary depending
on your embedded Linux distribution and hardware. Always test optimizations in
a controlled environment before deploying them to production systems. Refer to
the official systemd documentation and the documentation for your specific
Linux distribution for more detailed information.

Optimize opensuse in Desktop

Optimizing openSUSE for desktop use involves tweaking various settings to
improve performance, responsiveness, and user experience. Here are some
general optimization tips for openSUSE desktop:

 Update the System:
Ensure your system is up-to-date to benefit from the latest software updates,
bug fixes, and security patches.

sudo zypper refresh

sudo zypper update

 Graphics Drivers:

Install proper graphics drivers, especially if you have dedicated graphics cards.
For NVIDIA, use the official repository:

sudo zypper addrepo --refresh
https://download.nvidia.com/opensuse/leap/<version> NVIDIA
sudo zypper install-new-recommends

Desktop Environment Tweaks:

KDE Plasma:

Animations: Adjust animation settings in System Settings > Desktop Behavior >
Desktop Effects.
Desktop Effects: Disable effects that may impact performance if needed.

GNOME:

Extensions: Manage GNOME Shell extensions carefully. Disable unnecessary
ones to improve performance.

Optimize Boot Time:

Identify and disable unnecessary services to speed up boot time.

sudo systemctl list-unit-files --state=enabled

sudo systemctl disable <service_name>

Reduce Swappiness:

Modify swappiness to control how often the system swaps to disk.

Edit /etc/sysctl.conf and add or modify the following line​
vm.swappiness = 10​
Apply the changes​
sudo sysctl -p

Edit /etc/sysctl.conf and add or modify the following line​
vm.swappiness = 10​
Apply the changes​
sudo sysctl -p​

Optimize Disk I/O:

If using an SSD, enable TRIM for better performance and longevity.

sudo systemctl enable fstrim.timer

sudo systemctl start fstrim.timer

Manage Startup Applications:

Review and disable unnecessary startup applications in your desktop
environment settings.

Enable Firewalld:
Ensure the firewall is active for improved security.

sudo systemctl enable firewalld

sudo systemctl start firewalld

Package Cleanup:

Remove unnecessary packages and old kernels.

sudo zypper packages --old

sudo zypper remove <package_name>

Optimize Fonts:

Adjust font settings and install additional fonts if needed.

sudo zypper install google-roboto-fonts

Desktop Search:

Adjust or disable desktop search services like Baloo (KDE) or Tracker (GNOME)
if they impact performance.

Adjust Power Settings:

Configure power settings to balance performance and energy efficiency

KDE: System Settings > Power Management
GNOME: Settings > Power

Additional Repositories:

Consider adding additional repositories for access to a broader range of
software.

openSUSE Leap
sudo zypper addrepo --refresh

https://ftp.gwdg.de/pub/opensuse/repositories/<repository_path>/r

epo/oss repo_name

openSUSE Tumbleweed

sudo zypper addrepo --refresh

https://download.opensuse.org/repositories/<repository_path>/repo

/oss repo_name

Performance Monitoring:

Use tools like htop or gnome-system-monitor to monitor system resources and
identify resource-hungry processes.

Desktop Theme:
Choose a lightweight desktop theme for better performance.

Btrfs Filesystem (If Used):

If using Btrfs, consider enabling compression for better disk space utilization.

sudo btrfs filesystem defragment -r -v /

ss

Linux optimization involves various tools and techniques to enhance the performance,
security, and efficiency of a Linux system. Here are some common tools and techniques
for optimizing a Linux system:

 1. Package Management:
 - Keep the system and software packages up-to-date using the package manager
(`apt`, `yum`, `zypper`, etc.).
 - Remove unnecessary packages to reduce the system's footprint.

 2. Performance Monitoring Tools:
 - Use tools like `top`, `htop`, and `iotop` to monitor system resource usage (CPU,
memory, disk I/O).
 - `sar` and `vmstat` provide detailed system statistics over time.

 3. Filesystem Optimization:
 - Use `df` and `du` to analyze disk space usage.
 - Consider using the `noatime` mount option in `/etc/fstab` to reduce disk writes for
file access time.
 - Optimize disk performance with tools like `fstrim` for SSDs.

 4. Kernel Tuning:
 - Adjust kernel parameters using `sysctl` to optimize network and system settings.
 - Review and modify the `/etc/security/limits.conf` file for process resource limits.

 5. CPU and Memory Management:
 - Adjust CPU scaling governor and frequency using tools like `cpufrequtils`.
 - Optimize memory usage with tools like `sysstat` and `smem`.

 6. Swap Optimization:
 - Tune the swap space usage and priority using `swappiness` in `/etc/sysctl.conf`.
 - Monitor swap usage with tools like `free` and `swapon`.

 7. Network Optimization:
 - Optimize network performance using `ethtool`.
 - Adjust network parameters using `sysctl` and `/etc/security/limits.conf`.

 8. Security Hardening:
 - Regularly update and patch the system to address security vulnerabilities.
 - Configure and use a firewall (e.g., `iptables`, `ufw`) to secure network traffic.

 9. Service Optimization:
 - Review and disable unnecessary services and daemons.
 - Optimize and tune specific services like Apache, Nginx, MySQL, etc.

 10. Log Management:
​ - Configure log rotation (`logrotate`) to manage log files efficiently.
​ - Analyze logs using tools like `journalctl`, `dmesg`, and `tail` for troubleshooting.

 11. Automation and Scripting:
​ - Automate routine tasks using scripts and tools like `cron`.
​ - Optimize startup processes and services using `systemd`.

 12. Hardware and Driver Optimization:
​ - Use updated and optimized device drivers for hardware components.
​ - Monitor hardware health using tools like `smartctl` for hard drives.

 13. Application Optimization:
​ - Optimize application configurations for performance.
​ - Use caching mechanisms where applicable (e.g., Varnish, Memcached).

 14. Containerization:
​ - Consider containerization with tools like Docker or Podman for efficient
resource utilization and isolation.

Remember that optimizations should be approached carefully, and changes should be
tested in a controlled environment before applying them to a production system. Always
keep backups and documentation of configurations. The specific tools and techniques
may vary based on the Linux distribution and system requirements.

