
Proposal for Converting Legacy Servers into New-Generation
Firewalls: A Comprehensive Guide

Abstract

This proposal outlines the steps necessary to repurpose legacy servers into
modern, efficient, and secure firewalls using open-source technologies, primarily
based on Linux. By leveraging Linux distributions such as Debian and Ubuntu,

along with advanced security tools like iptables, fail2ban, and intrusion

detection systems (IDS) like Zeek and Snort, this solution enhances network
security while optimizing the use of outdated hardware. The approach ensures
effective network monitoring, threat detection, malware prevention, and active
defense against attacks.

Briefing Plan

1. Introduction

The project focuses on converting outdated servers into modern, efficient
Linux-based firewalls, which can help optimize organizational costs and improve
the environmental footprint. By utilizing existing hardware, this initiative aims to
reduce technological waste and enhance the security infrastructure of an
organization.

2. Project Overview
● Objective: Repurpose old servers into cost-effective Linux-based firewalls.
● Target Audience: IT departments, network administrators, and

sustainability teams within the organization.

3. Steps in the Project
● Assessment of Existing Infrastructure: Evaluate current hardware and assess

its suitability for conversion into a firewall.
● Selection of Linux Distribution: Choose an appropriate lightweight Linux

distribution (e.g., Ubuntu Server, CentOS, or specialized firewall OS like
pfSense, OPNsense).

● Firewall Configuration: Install and configure firewall software to meet the
organization’s security requirements, such as intrusion detection, traffic
filtering, VPN setup, and monitoring tools.

● Testing and Deployment: Test the converted firewalls in a lab
environment to ensure performance and security compliance before full
deployment across the organization.

● Maintenance Plan: Establish procedures for regular updates, security
patches, and performance monitoring.

4. Benefits of Converting Old Servers into Linux-based Firewalls

A. Cost Optimization

● Reduction in Hardware Costs: Repurposing old servers significantly
lowers the need to purchase new, expensive hardware.

● Low Operational Costs: Linux-based firewalls are often open-source,
reducing software licensing costs compared to proprietary firewall
solutions.

● Energy Efficiency: Modern Linux distributions are lightweight and less
resource-intensive, leading to lower power consumption, thus reducing
overall energy costs.

● Reduced Maintenance Costs: Linux-based systems tend to require fewer
resources for ongoing maintenance, saving on IT labor costs.

B. Security Enhancements

● Advanced Firewall Features: Linux-based firewalls provide robust
security, such as customizable packet filtering, intrusion prevention
systems (IPS), and VPN support, improving the overall network defense.

● Open-Source Flexibility: Linux-based firewalls can be easily adapted and
integrated with existing infrastructure, allowing for a more tailored and
responsive security setup.

● Regular Security Updates: Linux systems are actively updated with the
latest security patches, ensuring the firewall remains resilient to emerging
threats.

C. Environmental Impact

● Reduction of E-Waste: Repurposing old servers reduces the amount of
electronic waste, contributing to environmental sustainability.

● Longer Hardware Lifecycle: Extending the life of IT equipment delays the
need for new devices, reducing the environmental footprint associated with
manufacturing, transportation, and disposal of electronics.

5. The Role of the European Union's "Right to Repair" Measures

The European Union has been taking significant steps toward minimizing
electronic waste through its "Right to Repair" measures. These measures ensure
that consumers and businesses have the ability to repair and extend the lifespan
of their electronic devices, including servers, through the following actions:

● Encouraging Repairability: Manufacturers are now required to make their
products, including servers, easier to repair by providing necessary parts
and repair manuals.

● Supporting Recycling: The EU encourages the recycling of electronic
waste and the repurposing of components, such as old servers, to reduce
the need for new devices.

● Reducing Waste: By making repair more accessible and affordable, the
EU helps prevent premature disposal of electronic goods, which can have
harmful environmental effects.

● Sustainability Goals: These measures align with the EU’s broader
sustainability and circular economy initiatives, ensuring that electronic
products have a longer, more productive life cycle.

This "Right to Repair" initiative supports projects like converting old servers into
firewalls by promoting the reuse and repurposing of hardware, aligning with
environmental and cost-saving objectives.

2. Choosing the Right Linux Distribution

2.1. Minimal Linux Distribution: The first step in creating a firewall is selecting
the right operating system (OS). For this purpose, a minimal installation of a
stable Linux distribution is recommended.

● Debian and Ubuntu Server are highly recommended due to their stability,
extensive documentation, and large support community. A minimal
installation ensures that only the necessary packages are installed,
minimizing the system’s attack surface.

● Alternative Options: If system resources are extremely limited, lightweight
distributions like Lubuntu or BunsenLabs can also be considered, as they
are optimized for low-resource environments while still providing robust
Linux functionality.

Certainly! Below is some relevant data on e-waste in the European Union, along
with key statistics about the scale of the issue. These can serve as a baseline for
calculating the impact of converting old servers into firewalls to help mitigate
e-waste.

European Union E-Waste Statistics

Statistic Value Source/Year

Total E-Waste Generation in
the EU

12.3 million metric tons
(2019)

European Commission,
2021

Average E-Waste per
Person in the EU

16.6 kg per person per
year

European Commission,
2021

E-Waste Recycling Rate in
the EU

42.5% (2019) European Commission,
2021

Percentage of E-Waste
Sent to Landfills

40% European Commission,
2021

Projected E-Waste Growth
(per year)

4-5% annual increase Global E-Waste Monitor,
2020

Value of E-Waste Recycling €55 billion annually
(global market)

United Nations
University, 2020

Total E-Waste Recycled in
the EU

5.2 million metric tons
(2019)

European Commission,
2021

How Converting Old Servers into Firewalls Can Help

By repurposing old servers instead of discarding them as e-waste, this project
can help address the growing challenge of e-waste. Here’s how the project might
contribute to reducing e-waste and its environmental impact:

1. Reduction in E-Waste: Each server repurposed into a Linux-based firewall prevents it
from being discarded as waste. This will help reduce the total volume of e-waste
generated by the organization and potentially by others in the broader ecosystem.

2. Reuse of Components: Repurposing old servers involves reusing valuable parts,
including processors, memory, and storage, which are often made from scarce and
precious resources like gold, copper, and rare earth metals. This helps reduce the
demand for new devices, curbing the environmental impact of manufacturing and mining.

3. Extension of Hardware Lifespan: By extending the useful life of old servers, this
project aligns with the EU's "Right to Repair" initiatives, which encourage a longer
lifecycle for electronic devices. This results in fewer servers needing to be disposed of or
recycled, thereby contributing to a reduction in the total e-waste generated.

Potential Environmental Impact Calculation

To calculate the potential reduction in e-waste, you can use the following approach:

1. Estimate the number of old servers to be converted: Suppose you have 100 servers
that would otherwise be replaced by new devices. If each server weighs approximately
20 kg and is typically discarded at the end of its lifecycle, this results in:

[100 \text{ servers} \times 20 \text{ kg/server} = 2000 \text{ kg of e-waste}]

2. Estimate the e-waste reduction: By converting these servers into Linux-based
firewalls, you can keep them in use, thus preventing the 2000 kg of e-waste from being
generated.

3. Calculate potential contribution to EU e-waste reduction: Since the total e-waste
generated by the EU in 2019 was 12.3 million metric tons (12.3 billion kg), your project’s
impact in terms of e-waste reduction can be calculated as a percentage of the total
e-waste produced:

[\frac{2000 \text{ kg of e-waste prevented}}{12,300,000,000 \text{ kg total e-waste}}
\times 100 = 0.00001626%]

While this impact may seem small on a global scale, this is just one organization’s contribution.
If scaled across multiple organizations, the collective impact on reducing e-waste can become
significant.

Conclusion
By converting old servers into Linux-based firewalls, the project helps reduce the environmental
impact of e-waste. Even though individual contributions might seem minimal, when aggregated,
they can make a notable difference in the fight against growing e-waste in the European Union.
Additionally, aligning with the EU's "Right to Repair" measures strengthens the case for
maximizing hardware lifecycles, reducing the need for new devices, and minimizing electronic
waste.

3. Configuring the Firewall with iptables

3.1. Overview of iptables: iptables is a powerful and flexible utility for

managing network traffic rules on a Linux-based firewall. It operates by defining
rules for incoming and outgoing packets, allowing or blocking traffic based on
criteria such as IP address, protocol, and port number.

3.2. Basic Firewall Configuration: To secure the server, the following basic

iptables commands are applied to control network traffic:

sudo iptables -A INPUT -m conntrack --ctstate

ESTABLISHED,RELATED -j ACCEPT
sudo iptables -A INPUT -p tcp --dport 22 -j ACCEPT # Allow SSH
sudo iptables -A INPUT -j DROP

● The first rule allows established and related connections, which are
necessary for maintaining active sessions.

● The second rule specifically allows SSH traffic on port 22, enabling remote
management of the firewall.

● The third rule denies all other incoming traffic, ensuring that only explicitly
allowed connections are accepted.

3.3. Optimization of Rules: To minimize overhead, it is crucial to avoid
unnecessary rules. Efficient rule ordering is key, where more frequently used
rules are placed at the top to reduce processing time. The following example

uses conntrack for connection tracking, making it efficient by grouping related

packets:

iptables -A INPUT -m conntrack --ctstate ESTABLISHED,RELATED -j

ACCEPT

3.4. Persistence of Rules: To ensure that the rules persist across reboots, use

the iptables-persistent package:

sudo apt install iptables-persistent

sudo netfilter-persistent save

sudo netfilter-persistent reload

This configuration saves the current iptables rules and ensures they are

reloaded upon system restart.

To configure iptables as a router on a Linux machine, you
essentially need to set up IP forwarding and configure appropriate
NAT (Network Address Translation) rules for routing traffic between
different network interfaces. This setup allows the Linux machine to
forward packets between networks, effectively routing traffic and
acting as a gateway.

Step-by-Step Configuration:

1. Enable IP Forwarding

IP forwarding is the key to enabling the machine to route traffic between different
networks.

To enable IP forwarding temporarily (until the next reboot), run the following
command:

 sysctl -w net.ipv4.ip_forward=1

To make the change permanent, edit the sysctl.conf file:

 vi /etc/sysctl.conf

 Find the line #net.ipv4.ip_forward = 1 and uncomment it (remove the #),

or add it if it's not there:

 net.ipv4.ip_forward = 1

 Then apply the changes:

 sysctl -p

2. Configure Network Interfaces

Assume the Linux machine has two network interfaces:

● eth0: The external interface (connected to the Internet or upstream

network).

● eth1: The internal interface (connected to the local network).

You need to assign IP addresses to these interfaces. This can either be done

manually via the ifconfig or ip command, or automatically via DHCP.

For example, to assign static IP addresses:

ifconfig eth0 192.168.1.1 netmask 255.255.255.0
ifconfig eth1 192.168.2.1 netmask 255.255.255.0

3. Set Up NAT (Network Address Translation)

To allow machines on your internal network (connected to eth1) to access the

external network (connected to eth0), you'll need to set up NAT.

Use the iptables command to enable NAT on the external interface (eth0).

This will masquerade internal IP addresses (from eth1) as the external IP of

eth0.

 iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

This rule translates all outgoing packets from the internal network to appear as
though they are coming from the external network's IP address.

4. Allow Forwarding of Traffic

You need to allow packets to be forwarded between the interfaces (eth0 and

eth1). Add the following iptables rules to allow forwarding between the

interfaces.

To allow traffic from the internal network (eth1) to reach the external network

(eth0), add this rule:

 iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT

To allow traffic from the external network (eth0) to reach the internal network

(eth1), add this rule:

 iptables -A FORWARD -i eth0 -o eth1 -m state --state

RELATED,ESTABLISHED -j ACCEPT

5. Save iptables Configuration

By default, iptables rules will not persist across reboots. To make sure your
configuration is saved:

On most Linux distributions, you can save the iptables configuration using:

 iptables-save > /etc/iptables/rules.v4

Or, if you're using a distribution like Red Hat or CentOS, use the service
command to save:

 service iptables save

6. Testing the Routing Setup

To test the routing:

● From a machine in the internal network (connected to eth1), try pinging an

external host (e.g., ping 8.8.8.8).

● The Linux machine should route the traffic from the internal machine to the
external network and return the response.

Example iptables Script for Routing

Here’s an example shell script that configures iptables as a basic router:

#!/bin/bash

Enable IP forwarding
sysctl -w net.ipv4.ip_forward=1

Configure NAT (Masquerading)
iptables -t nat -A POSTROUTING -o eth0 -j MASQUERADE

Allow forwarding from eth1 (internal) to eth0 (external)
iptables -A FORWARD -i eth1 -o eth0 -j ACCEPT

Allow established connections to be forwarded back from eth0

to eth1
iptables -A FORWARD -i eth0 -o eth1 -m state --state

RELATED,ESTABLISHED -j ACCEPT

Save iptables rules
iptables-save > /etc/iptables/rules.v4

Make the script executable and run it:

chmod +x /path/to/iptables-router.sh

./path/to/iptables-router.sh

Additional Notes:

● Firewall Considerations: You may need to add additional firewall rules
depending on your security requirements. For example, to block certain

traffic types, you can specify DROP or REJECT rules in the iptables

configuration.
● DHCP Server: If you want the router to assign IP addresses to devices on

the internal network, you can set up a DHCP server like

isc-dhcp-server.

This setup provides basic routing capabilities using iptables. More complex

setups may require additional configurations, such as advanced routing, VPNs,
or more granular firewall rules.

create Zone and Manage it with Iptables and ipset

Creating zones with iptables and ipset involves using ipset to define

groups of IP addresses (or entire networks) and then applying iptables rules

that reference these groups (i.e., "zones"). By combining these two tools, you can
create more granular and efficient firewall configurations that mimic zones.

Steps to Create and Manage Zones with iptables and ipset

Here’s a step-by-step guide on how to define and manage zones using ipset

and iptables.

1. Install and Set Up ipset

ipset is a utility that allows you to create sets of IP addresses or networks,

which can then be used in iptables rules.

Install ipset (if not already installed)

sudo apt update
sudo apt install ipset # On Debian/Ubuntu

2. Create IP Sets for Zones

You can create sets for different zones such as trusted, untrusted, or blocked.
For example, let's create a set for trusted IPs and untrusted IPs.

Create ipset for Trusted Zone (Internal network)

sudo ipset create trusted_zone hash:ip
sudo ipset add trusted_zone 192.168.1.0/24 # Add trusted

internal network

Create ipset for Untrusted Zone (External network)

sudo ipset create untrusted_zone hash:ip
sudo ipset add untrusted_zone 203.0.113.0/24 # Add untrusted

external network

You can also add individual IPs to the sets:

sudo ipset add trusted_zone 192.168.1.10 # Add a specific

trusted IP

3. Create iptables Rules Using ipset

Once you have created ipset sets (which will act as your zones), you can use

these sets in iptables rules.

Example: Allow Traffic from Trusted Zone

Allow traffic from the trusted_zone to your server:

sudo iptables -A INPUT -m set --match-set trusted_zone src -j

ACCEPT

Example: Block Traffic from Untrusted Zone

Drop traffic from the untrusted_zone:

sudo iptables -A INPUT -m set --match-set untrusted_zone src -j

DROP

Example: Allow Specific Ports for Trusted Zone

Allow SSH (port 22) and HTTP (port 80) only from the trusted_zone:

sudo iptables -A INPUT -m set --match-set trusted_zone src -p

tcp --dport 22 -j ACCEPT
sudo iptables -A INPUT -m set --match-set trusted_zone src -p

tcp --dport 80 -j ACCEPT

Example: Block All Incoming Traffic from Untrusted Zone

You can block all incoming traffic from the untrusted_zone:

sudo iptables -A INPUT -m set --match-set untrusted_zone src -j

DROP

4. Saving ipset and iptables Rules

When you create ipset sets and iptables rules, they will not persist after a

reboot unless saved. Here's how to ensure they persist:

Save ipset Sets

To make sure your ipset sets persist across reboots, you need to save them:

Save the ipset configuration to a file:

 sudo ipset save > /etc/iptables/rules.v4

You can add a command to restore the ipset configuration at boot time. Add

this to a startup script (e.g., /etc/rc.local on systems that support it):

 ipset restore < /etc/iptables/rules.v4

Save iptables Rules

On most Linux systems, iptables rules are saved with iptables-save and

restored with iptables-restore:

Save the iptables configuration:

 sudo iptables-save > /etc/iptables/rules.v4

Restore iptables rules at boot by configuring your system’s startup process.

On systems using systemd, you can create a systemd service to restore the

rules, or use iptables-persistent if available.

 To install iptables-persistent (on Debian/Ubuntu):

 sudo apt-get install iptables-persistent

 This will prompt you to save your current iptables rules and automatically

restore them on boot.

5. Managing Zones Dynamically

Once you have your zones set up, you can manage them dynamically by adding

or removing IP addresses from the ipset sets as needed. This allows for

on-the-fly modifications without needing to change your iptables rules.

Adding IPs to an Existing Zone (e.g., trusted zone):

sudo ipset add trusted_zone 192.168.2.0/24 # Add a new trusted

network

Removing IPs from a Zone:

sudo ipset del trusted_zone 192.168.1.10 # Remove a specific IP

from trusted zone

Check the Contents of a Zone:

sudo ipset list trusted_zone # List all IPs in the trusted zone

6. Example: Combining Multiple Zones

You can have multiple zones such as internal, dmz, external, etc., and

apply different rules to each zone.

Example: Set up three zones

Create sets for multiple zones:

sudo ipset create internal_zone hash:ip
sudo ipset create dmz_zone hash:ip
sudo ipset create external_zone hash:ip

Add IPs to these zones:

sudo ipset add internal_zone 192.168.1.0/24
sudo ipset add dmz_zone 10.1.1.0/24
sudo ipset add external_zone 198.51.100.0/24

Apply firewall rules based on these zones:

Allow access from the internal_zone to dmz_zone (e.g., allow HTTP traffic

from internal to DMZ):

 sudo iptables -A FORWARD -m set --match-set internal_zone src

-m set --match-set dmz_zone dst -p tcp --dport 80 -j ACCEPT

Block all traffic from the external_zone:

sudo iptables -A INPUT -m set --match-set external_zone src -j

DROP

Summary

To create and manage zones with iptables and ipset:

1. Use ipset to define sets of IP addresses or networks (acting as
zones).

2. Use iptables to reference those sets and apply rules to traffic.

3. Manage IP addresses dynamically by adding/removing them from the
sets.

4. Ensure persistence across reboots by saving ipset and iptables
configurations.

This approach gives you powerful flexibility in managing complex firewall
configurations based on zones.

Example for Koosha Zone :

To create a "Koosha" zone using ipset and iptables, you can follow the steps

below. This will involve creating an ipset named koosha_zone and then

applying firewall rules using iptables to manage traffic for that zone. Here's

how you can do it:

Step 1: Install ipset and iptables (if not already installed)

Make sure ipset and iptables are installed on your system:

For Debian/Ubuntu:

sudo apt update
sudo apt install ipset iptables

Step 2: Create the "Koosha" Zone Using ipset

1. Create the ipset for the "Koosha" zone. We'll create a hash:ip type

set called koosha_zone, which can hold IP addresses (or networks) you

want to include in the "Koosha" zone.

sudo ipset create koosha_zone hash:ip

2. Add IP addresses or networks to the "Koosha" zone. You can add
individual IPs or networks that belong to the "Koosha" zone.

For example, if you want to add a specific IP or subnet:

sudo ipset add koosha_zone 192.168.1.100 # Add a specific IP
sudo ipset add koosha_zone 10.0.0.0/24 # Add an entire

subnet

3. Verify the contents of the koosha_zone:

sudo ipset list koosha_zone

Step 3: Create iptables Rules for the Koosha Zone

Now that you've created the koosha_zone set in ipset, you can use

iptables to apply firewall rules to the traffic from or to that zone.

Example 1: Allow Traffic from the "Koosha" Zone

If you want to allow traffic from the koosha_zone (e.g., from trusted IPs), you

can create an iptables rule like this:

sudo iptables -A INPUT -m set --match-set koosha_zone src -j

ACCEPT

This rule allows incoming traffic from any IP in the koosha_zone.

Example 2: Block Traffic from the "Koosha" Zone

If you want to block incoming traffic from the koosha_zone:

sudo iptables -A INPUT -m set --match-set koosha_zone src -j

DROP

This rule will block any traffic from the IPs listed in the koosha_zone.

Example 3: Allow Specific Ports from the "Koosha" Zone

You might want to allow traffic from the koosha_zone only for specific services

or ports (e.g., SSH on port 22 or HTTP on port 80). Here’s how you can do it:

sudo iptables -A INPUT -m set --match-set koosha_zone src -p tcp

--dport 22 -j ACCEPT # Allow SSH
sudo iptables -A INPUT -m set --match-set koosha_zone src -p tcp

--dport 80 -j ACCEPT # Allow HTTP

Example 4: Deny All Traffic from the "Koosha" Zone

If you want to deny all incoming traffic from the koosha_zone but allow other

zones or services:

sudo iptables -A INPUT -m set --match-set koosha_zone src -j

REJECT

This will reject all traffic from the koosha_zone while still allowing traffic from

other sources.

Step 4: Save ipset and iptables Rules (Optional)

To ensure the ipset and iptables rules persist across reboots, you'll need to

save them.

Save ipset rules:

sudo ipset save > /etc/iptables/rules.v4 # Save ipset to a

file

You can add a command to restore the ipset rules at boot time, for example, by

adding the restore command in /etc/rc.local (on systems that support it):

ipset restore < /etc/iptables/rules.v4

Save iptables rules:

You can save the iptables rules using iptables-save:

sudo iptables-save > /etc/iptables/rules.v4

For systems using iptables-persistent (on Debian/Ubuntu), you can install

the package to ensure rules persist:

sudo apt-get install iptables-persistent

This will automatically restore your rules on boot.

Step 5: Verify and Test the Rules

After setting up the "Koosha" zone and applying the rules, it’s important to verify
that everything is working correctly.

Check the ipset list:

sudo ipset list koosha_zone

This will display all IPs in the koosha_zone set.

Check the iptables rules:

sudo iptables -L -v -n

This will show the current iptables rules along with the packet counts.

Example Summary of Steps

1. Create ipset for the Koosha Zone:

sudo ipset create koosha_zone hash:ip

2. Add IPs or subnets to the Koosha Zone:

sudo ipset add koosha_zone 192.168.1.100
sudo ipset add koosha_zone 10.0.0.0/24

3. Create iptables rules for the Koosha Zone:

Allow traffic from the zone:

 sudo iptables -A INPUT -m set --match-set koosha_zone src -j

ACCEPT

Block traffic from the zone:

 sudo iptables -A INPUT -m set --match-set koosha_zone src -j

DROP

4. Save the ipset and iptables configurations:

sudo ipset save > /etc/iptables/rules.v4
sudo iptables-save > /etc/iptables/rules.v4

5. Verify the rules:

sudo ipset list koosha_zone
sudo iptables -L -v -n

By following these steps, you can successfully create and manage a "Koosha"

zone with ipset and iptables, which will allow you to control traffic from

specific IPs or networks effectively.

4. Intrusion Detection and Prevention Systems (IDS/IPS)

4.1. PSAD: Port Scan Attack Detector

PSAD is a useful tool for detecting and reacting to port scans, a common tactic
used by attackers to probe for vulnerabilities. After installing and configuring
PSAD, the system can automatically block IP addresses involved in scanning
attempts.

sudo apt install psad -y
sudo psad --sig-update
sudo systemctl restart psad

The configuration file (/etc/psad/psad.conf) should be updated to enable

automatic IDS on specific ports:

ENABLE_AUTO_IDS Y;
AUTO_IDS_TCP_PORTS any;
AUTO_IDS_UDP_PORTS any;

4.2. Zeek (Formerly Bro): Zeek is a comprehensive network monitoring tool
used to analyze network traffic, identify anomalies, and detect malicious
activities. Installing Zeek on a Linux server provides detailed network analysis
and can act as a robust IDS.

sudo apt install curl gnupg2 wget -y

curl -fsSL

https://download.opensuse.org/repositories/security:zeek/xUbuntu

_22.04/Release.key | gpg --dearmor | tee

/etc/apt/trusted.gpg.d/security_zeek.gpg

echo 'deb

http://download.opensuse.org/repositories/security:/zeek/xUbuntu

_22.04/ /' | tee /etc/apt/sources.list.d/security:zeek.list

sudo apt update -y

sudo apt install zeek -y

Zeek’s capabilities go beyond simple IDS and include detailed logs for forensic
analysis.

4.3. Snort: Snort is another highly effective IDS/IPS tool for real-time traffic
analysis. It is particularly useful for detecting and blocking malicious network
activity, such as exploitation attempts, malware traffic, and denial-of-service
(DoS) attacks.

sudo apt install snort -y

sudo snort -c /etc/snort/snort.conf -i eth0

To enable community rules for Snort:

wget

https://www.snort.org/downloads/community/community-rules.tar.gz

tar -xvzf community-rules.tar.gz -C /etc/snort/rules/

5. Malware Detection and Prevention

5.1. ClamAV: ClamAV is an open-source antivirus engine for detecting trojans,
viruses, and other malicious threats. Regular scanning and automatic removal of
detected files can significantly enhance the server's security posture.

sudo apt install clamav -y

0 2 * * * /usr/bin/clamscan --remove --recursive --infected /

--exclude-dir="^/sys" --exclude-dir="^/proc"

--log=/var/log/clamav-scan.log

5.2. Maldet (Linux Malware Detect): Maldet is another useful tool designed to
scan for malware. It provides additional features such as email notifications and
quarantine for infected files.

cd /tmp && wget

http://www.rfxn.com/downloads/maldetect-current.tar.gz && tar

xfz maldetect-current.tar.gz && cd maldetect-1.6.* && sudo

./install.sh

6. Brute Force Protection

6.1. Fail2ban: Fail2ban helps mitigate brute force attacks by monitoring log files
for suspicious login attempts and banning the corresponding IP addresses after a
configurable number of failed attempts.

sudo apt install fail2ban -y

sudo cp /etc/fail2ban/jail.conf /etc/fail2ban/jail.local

The following configuration blocks IPs after five failed login attempts within 10
minutes:

ignoreip = 127.0.0.1/8 ::1 192.168.1.0/24
bantime = 1d
findtime = 10m
maxretry = 5

7. System Hardening

7.1. Secure SSH Configuration: To protect the firewall from unauthorized SSH
access, it is important to disable root login.

sudo vi /etc/ssh/sshd_config

PermitRootLogin no

7.2. Unattended Security Updates: Enabling automatic security updates
ensures that the system remains protected against known vulnerabilities without
requiring manual intervention.

sudo apt install unattended-upgrades -y
sudo dpkg-reconfigure unattended-upgrades

8. Monitoring and Logging

8.1. Netdata Monitoring: Netdata provides real-time monitoring of system
performance, including CPU, RAM, network traffic, and disk usage. Its detailed
visual interface helps identify issues before they become critical.

sudo bash <(curl -Ss https://my-netdata.io/kickstart.sh)

8.2. Log Management: Ensure that logs from security tools like iptables,

psad, and fail2ban are centralized and stored securely for audit and forensic

analysis.

9. Conclusion

Repurposing old servers into next-generation firewalls can effectively safeguard
network infrastructures without incurring significant costs. By implementing a

robust suite of security tools, such as iptables, PSAD, Zeek, Snort, and

Fail2ban, the server can become a proactive defender against cyber threats.
Additionally, regular updates, malware scanning, and system hardening ensure
that the firewall remains resilient in the face of evolving security challenges.

This approach not only maximizes the use of legacy hardware but also provides
an efficient, cost-effective solution to network security, leveraging the power of
open-source tools and Linux’s inherent flexibility and robustness.

	Proposal for Converting Legacy Servers into New-Generation Firewalls: A Comprehensive Guide
	Abstract

	Briefing Plan
	1. Introduction
	The project focuses on converting outdated servers into modern, efficient Linux-based firewalls, which can help optimize organizational costs and improve the environmental footprint. By utilizing existing hardware, this initiative aims to reduce technological waste and enhance the security infrastructure of an organization.
	2. Project Overview
	3. Steps in the Project
	4. Benefits of Converting Old Servers into Linux-based Firewalls
	A. Cost Optimization
	B. Security Enhancements
	C. Environmental Impact

	5. The Role of the European Union's "Right to Repair" Measures

	The European Union has been taking significant steps toward minimizing electronic waste through its "Right to Repair" measures. These measures ensure that consumers and businesses have the ability to repair and extend the lifespan of their electronic devices, including servers, through the following actions:
	This "Right to Repair" initiative supports projects like converting old servers into firewalls by promoting the reuse and repurposing of hardware, aligning with environmental and cost-saving objectives.
	2. Choosing the Right Linux Distribution
	European Union E-Waste Statistics
	How Converting Old Servers into Firewalls Can Help
	Potential Environmental Impact Calculation

	Conclusion
	3. Configuring the Firewall with iptables
	Step-by-Step Configuration:
	1. Enable IP Forwarding
	2. Configure Network Interfaces
	3. Set Up NAT (Network Address Translation)
	4. Allow Forwarding of Traffic
	5. Save iptables Configuration
	6. Testing the Routing Setup
	Example iptables Script for Routing

	Additional Notes:
	
	Steps to Create and Manage Zones with iptables and ipset
	1. Install and Set Up ipset
	Install ipset (if not already installed)

	2. Create IP Sets for Zones
	Create ipset for Trusted Zone (Internal network)
	Create ipset for Untrusted Zone (External network)

	3. Create iptables Rules Using ipset
	Example: Allow Traffic from Trusted Zone
	Example: Block Traffic from Untrusted Zone
	Example: Allow Specific Ports for Trusted Zone
	Example: Block All Incoming Traffic from Untrusted Zone

	4. Saving ipset and iptables Rules
	Save ipset Sets
	Save iptables Rules

	5. Managing Zones Dynamically
	Adding IPs to an Existing Zone (e.g., trusted zone):
	Removing IPs from a Zone:
	Check the Contents of a Zone:

	6. Example: Combining Multiple Zones
	Example: Set up three zones

	Summary
	Step 1: Install ipset and iptables (if not already installed)
	For Debian/Ubuntu:

	Step 2: Create the "Koosha" Zone Using ipset
	Step 3: Create iptables Rules for the Koosha Zone
	Example 1: Allow Traffic from the "Koosha" Zone
	Example 2: Block Traffic from the "Koosha" Zone
	Example 3: Allow Specific Ports from the "Koosha" Zone
	Example 4: Deny All Traffic from the "Koosha" Zone

	Step 4: Save ipset and iptables Rules (Optional)
	Save ipset rules:
	Save iptables rules:

	Step 5: Verify and Test the Rules
	Check the ipset list:
	Check the iptables rules:

	Example Summary of Steps
	4. Intrusion Detection and Prevention Systems (IDS/IPS)
	5. Malware Detection and Prevention
	
	6. Brute Force Protection
	7. System Hardening
	8. Monitoring and Logging
	9. Conclusion

