
The file command in Linux is used to determine the type of a file. It can tell you
whether a file is a text file, an executable, a compressed file, an image, or some other
type of file based on its content rather than its extension.

—--

ExifTool is a powerful command-line application for reading, writing, and editing
metadata in image, video, and audio files. It supports a wide range of file formats and
metadata types, including EXIF, IPTC, XMP, and others. ExifTool can be used to
view, modify, or extract detailed metadata from files like photos, videos, audio files, and
even PDF documents.

Key Features of ExifTool:

●​ Read metadata: Extract metadata from a wide variety of file types.
●​ Write metadata: Modify or add metadata to files (EXIF, IPTC, XMP, etc.).
●​ Edit multiple files: Modify metadata for multiple files at once using batch

processing.
●​ Support for various formats: EXIF, IPTC, XMP, GPS, ICC profiles, audio tags

(MP3, FLAC), video tags (MP4, MOV), and more.
●​ Cross-platform: Available on Linux, macOS, and Windows.

—--

The strings command in Linux is a useful tool for extracting printable strings
(sequences of printable characters) from binary files, executables, or any file that
contains text. This command is commonly used in forensics, malware analysis, and
debugging to quickly identify human-readable strings inside a file, which can give clues
about the content, functionality, or potential malicious behavior of the file.

—--

File signatures, also known as magic numbers or file headers, are unique
sequences of bytes found at the beginning of a file. These signatures help identify the
type of file by comparing the first few bytes with known patterns for specific file types.
For example, .exe files (Windows executable files) have a specific file signature, as do
other file types like images, audio files, and documents.

When you mentioned "4d5s" as an example, I assume you're referring to the signature
of a specific file type, such as 4D 5A in hexadecimal, which is the signature for
Windows executable files (.exe).

Common File Signatures:

Here are a few examples of common file signatures (magic numbers) in hexadecimal
format:

1. Windows Executable Files (.exe)

●​ Signature: 4D 5A
●​ Description: This is the most common signature for Windows executables. It is

the ASCII code for the letters "MZ," which was the name of Mark Zbikowski, a
Microsoft engineer. This signature is present at the start of every .exe file.

Example: The first bytes of an .exe file:​
 4D 5A 90 00 03 00 00 00 04 00 00 00 00 00 00 00

2. JPEG Image (.jpg, .jpeg)

●​ Signature: FF D8 FF
●​ Description: This is the signature for JPEG image files, commonly seen at the

beginning of .jpg files.

Example: The first bytes of a JPEG file:​
 FF D8 FF E0 00 10 4A 46 49 46 00 01

3. PNG Image (.png)

●​ Signature: 89 50 4E 47 0D 0A 1A 0A
●​ Description: This is the file signature for PNG images. It’s a distinctive 8-byte

sequence that identifies the PNG format.

Example: The first bytes of a PNG file:​
 89 50 4E 47 0D 0A 1A 0A

4. GIF Image (.gif)

Signature: 47 49 46 38 37 61 or 47 49 46 38 39 61

Description: This signature represents the file format for GIF images. The two variants
are for different versions of GIF (87a and 89a).

Example: The first bytes of a GIF file:​
 47 49 46 38 39 61

5. PDF Document (.pdf)

●​ Signature: 25 50 44 46 2D
●​ Description: This is the signature for PDF files, which corresponds to the ASCII

characters "%PDF-" (in hexadecimal).

Example: The first bytes of a PDF file:​
 25 50 44 46 2D 31 2E 34

6. ZIP Archive (.zip)

●​ Signature: 50 4B 03 04
●​ Description: This signature identifies .zip compressed files, which are widely

used for storing multiple files.

Example: The first bytes of a ZIP file:​
 50 4B 03 04

7. MP3 Audio File (.mp3)

●​ Signature: 49 44 33
●​ Description: This is the signature for MP3 audio files, identifying the ID3

metadata header.

Example: The first bytes of an MP3 file:​
 49 44 33 04 20 00 00 00

8. Microsoft Word Document (.doc)

●​ Signature: D0 CF 11 E0 A1 B1 1A E1
●​ Description: This is the file signature for older Microsoft Word .doc files

(pre-2007).

Example: The first bytes of a Word .doc file:​
 D0 CF 11 E0 A1 B1 1A E1

9. Microsoft Word Document (.docx)

●​ Signature: 50 4B 03 04 (same as ZIP)
●​ Description: .docx files are essentially ZIP archives that contain XML files, and

thus they share the same signature as .zip files.

Example: The first bytes of a .docx file:​
 50 4B 03 04

How to View a File Signature:

You can view a file signature using various tools:

Using xxd on Linux/Unix:​
​

 xxd -p filename | head -n 1

This will display the first few bytes of the file in hexadecimal. For example:​
​

 xxd -p myfile.exe | head -n 1

hexdump:​
​

 hexdump -C filename | head -n 1

Using file Command: The file command in Linux can also tell you the file type
based on its signature:​
​
 file filename

Using Python: If you prefer scripting, you can use Python to read the first few bytes of
a file:​
​

 with open('filename', 'rb') as f:​
 signature = f.read(4) # Read the first 4 bytes​
 print(signature.hex())

—--

Sha256sum
Md5sum

Using File Hashes to Detect Malicious Files

a. Compare Hash with Known Malicious Hashes

Once you calculate the hash of a suspicious file, you can compare it with known
malware hashes to check if it's a match. This can be done in several ways:

●​ VirusTotal: A popular online service that allows you to upload files and check
their hash against a database of known malware hashes.

○​ Go to VirusTotal, enter the file hash, and check if it's already flagged as
malicious.

●​ Threat Intelligence Platforms: Use threat intelligence feeds or databases that
track known malware hashes to look up the hash. Some examples of platforms
include AlienVault, IBM X-Force, and MalwareBazaar.

●​ Manual Search: If you have a list of hashes from a known source (e.g., a threat
intelligence report), you can manually check your file hash against that list.

Example of checking file hashes against VirusTotal:

1.​ First, calculate the hash of the suspicious file:
2.​ Copy the resulting hash.
3.​ Visit VirusTotal and paste the hash into the search bar to check if the file is

flagged as malicious.

b. Hash Databases:

There are several malware hash databases where you can look up known malware file
hashes. These include:

●​ MalwareBazaar: A free repository of known malware hashes.
○​ Website: https://bazaar.abuse.ch

●​ CIRCL (Computer Incident Response Center Luxembourg): Another useful
database of known malicious file hashes.

○​ Website: https://www.circl.lu

—--

ClamAV (short for Clam AntiVirus) is an open-source antivirus engine used for
detecting trojans, viruses, malware, and other malicious threats. It is mainly used on
Linux, but can be installed on Windows and macOS as well. ClamAV is popular for its
powerful scanning capabilities and extensive signature-based detection system. It is
often used for scanning files and email attachments, and it can be integrated into
various applications and services for additional security.

https://www.virustotal.com/
https://www.virustotal.com/
https://www.circl.lu

Key Features of ClamAV:

●​ Signature-based scanning: ClamAV uses a large database of virus signatures
to detect known threats.

●​ Real-time scanning: You can configure ClamAV to scan files on-the-fly (e.g.,
when files are created or modified).

●​ Heuristic scanning: In addition to signature-based detection, ClamAV can
detect potential malware by analyzing file structure and behavior patterns.

●​ Command-line tool: ClamAV primarily operates through command-line utilities
(e.g., clamscan and clamd), but it can also be integrated with graphical
interfaces.

●​ Email scanning: It can be used to scan email servers for malicious attachments.
●​ Frequent signature updates: ClamAV regularly updates its virus database to

include the latest known threats.
●​ Cross-platform: It works on Linux, Windows, and macOS.

—--

Maldet (short for Linux Malware Detect) is a popular open-source malware scanner
designed specifically for Linux-based systems. It's especially useful for detecting web
shells, backdoors, and other types of malware commonly found on web servers. Maldet
integrates with the ClamAV engine and is designed to provide an additional layer of
security for web hosts and administrators.

Key Features of Maldet:

●​ Web Shell Detection: Maldet is highly effective in detecting web shells
(malicious scripts uploaded to web servers).

●​ Real-time Scanning: It can be configured to scan files and directories in
real-time for malware.

●​ Scheduled Scans: You can schedule regular scans of your server or specific
directories.

●​ Heuristic and Signature-Based Detection: Maldet uses a combination of
signature-based and heuristic scanning to detect known and unknown threats.

●​ Quarantine & Logging: It can quarantine infected files and log scan results for
further review.

●​ Integration with ClamAV: Although Maldet has its own set of malware
signatures, it can also leverage ClamAV for additional scanning capabilities.

●​ Extensive Reporting: Maldet provides detailed reports of scans, including the
type of malware detected and the file paths.

—--

YARA (Yet Another Ridiculous Acronym) is an open-source tool used for identifying
and classifying malware based on patterns in files or processes. It is widely used by
security researchers, malware analysts, and incident responders to identify specific
types of threats by creating custom rules that match certain characteristics of malicious
code. YARA rules can be used to detect malware, rootkits, viruses, or any other type of
malicious artifact.

YARA is known for its flexibility and power in the field of malware analysis, as it allows
you to define complex rules to match on both static and dynamic properties of files.

Key Features of YARA

1.​ Pattern Matching: YARA allows you to search for specific byte sequences,
strings, or regular expressions within files or memory.

2.​ Custom Rules: You can create your own rules to search for malware by defining
custom conditions based on file characteristics (such as strings, byte patterns,
file size, and other properties).

3.​ File and Memory Scanning: YARA can scan both disk files and memory to
detect malicious patterns.

4.​ Supports Multiple Rule Types: Rules can be based on:
○​ String-based conditions
○​ Regular expressions
○​ Hexadecimal sequences (byte patterns)

5.​ Logical Conditions: YARA rules support complex logical conditions like and,
or, not, and more.

6.​ Support for Metadata: You can include metadata (like the author, description,
and date) in the rules to categorize and annotate different rules.

7.​ Cross-Platform: YARA can be used on Linux, macOS, and Windows, making it
suitable for various security environments.

—--

CAPA (Code Analysis for Penetration Analysts) is an open-source tool developed by
FireEye (now part of Mandiant) used for analyzing and detecting capabilities within

malicious executables or code samples. CAPA is designed to help reverse engineers
and security analysts identify capabilities (such as file manipulation, network
communication, or privilege escalation) within a binary or executable file, helping to
better understand its behavior and intent.

Unlike traditional antivirus or signature-based detection, CAPA works by looking for
specific behaviors or actions the malware is designed to perform. By identifying these
capabilities, security analysts can get a clearer picture of what a piece of malware is
trying to do and how it operates.

Key Features of CAPA

1.​ Behavioral Analysis: CAPA identifies specific capabilities (such as network
communication, file manipulation, etc.) based on the analysis of a binary. It can
pinpoint actions within the code, helping analysts understand how the code
operates.

2.​ Signature-Free Detection: CAPA does not rely on traditional signatures but
instead detects malware by analyzing the logic and behaviors embedded in the
code.

3.​ Automated Capabilities Identification: CAPA automatically identifies and
classifies over 200 capabilities in malware samples.

4.​ Open Source: CAPA is open-source and freely available for use. The tool can be
extended and customized by analysts for their specific needs.

5.​ Dynamic and Static Analysis: It can be used in both static and dynamic
contexts:

○​ Static analysis involves examining the code without executing it.
○​ Dynamic analysis involves executing the code in a controlled

environment to observe its behavior.
6.​ Focus on Specific Malware Characteristics: Rather than scanning for known

malware hashes or patterns, CAPA looks at the functionality of the code, which is
particularly useful in detecting new and unknown malware variants.

—--

Foremost is a forensic data recovery tool, primarily used for file carving and
recovering deleted files from disk images, raw disks, or directories. It works by
identifying and recovering files based on their headers, footers, and internal data
structures, making it useful for digital forensics, data recovery, and incident response
scenarios.

Foremost is a command-line tool and works primarily with disk images or raw data to
recover lost or deleted files by searching for file signatures, even if the file system
metadata has been deleted or corrupted. It is commonly used in situations where
traditional file recovery tools or file systems fail, such as recovering files from an
unmounted drive, a formatted disk, or a damaged file system.

Key Features of Foremost:

1.​ File Carving: Foremost can recover files based on known file headers and
footers, regardless of whether the file system is intact or not. This is called file
carving.

2.​ Support for Multiple File Formats: Foremost supports a wide variety of file
types, including common ones like JPEG, PNG, PDF, DOCX, ZIP, MP3, and
many more. You can extend its capabilities by adding custom file type definitions
if needed.

3.​ File Recovery from Raw Disk Images: Foremost works with disk images (e.g.,
.dd, .img, .iso), allowing recovery from raw disk dumps without needing
access to the original file system.

4.​ Selective Recovery: Foremost allows you to specify particular file types for
recovery, saving time and resources by focusing on relevant files only.

5.​ Customizable File Signatures: You can create and modify custom signatures
for other file types that aren't natively supported.

6.​ Simple Command-Line Interface: The tool has a straightforward CLI, making it
easy to use for both novice and expert users.

7.​ Output Options: Foremost allows you to output recovered files into a specified
directory, making it easy to organize the recovered data.

—--

FLOSS (FireEye Labs Obfuscated String Solver) is an open-source tool designed to
help security researchers and reverse engineers extract obfuscated strings from
executables, malware samples, or any binary files. Obfuscation techniques, such as
encoding and encryption, are commonly used in malware to hide or disguise critical
strings, such as URLs, IP addresses, file paths, and commands, to evade detection by
security tools or analysts. FLOSS automates the process of detecting and decoding
these obfuscated strings, making it a useful tool for malware analysis.

Key Features of FLOSS:

1.​ Obfuscated String Detection: FLOSS specializes in identifying and decoding
obfuscated strings that might be hidden using various encoding or encryption
techniques in binary files, especially in malware samples.

2.​ Multiple Decoding Methods: The tool supports various common obfuscation
methods used in malware, such as Base64, XOR, Rot13, and other custom
encoding techniques.

3.​ Extracting Useful Information: FLOSS helps in extracting critical data from
malware, such as command-and-control (C&C) server IPs, domain names,
registry keys, file paths, passwords, or any other string embedded in the binary.

4.​ Detailed Output: FLOSS provides a detailed report that lists both the raw
obfuscated strings and their decoded values, helping analysts understand how
the malware is attempting to hide sensitive information.

5.​ Cross-Platform: FLOSS is a cross-platform tool, so it can be used on Linux,
macOS, and Windows operating systems.

6.​ Integration with Other Tools: FLOSS can be integrated with other malware
analysis tools like Cuckoo Sandbox, YARA, and others, enhancing the overall
malware analysis workflow.

—--

Pepper is an open-source tool developed for analyzing and reversing malware,
especially obfuscated code. It is used primarily for malware analysis in the context of
reverse engineering and malware detection, focusing on static analysis techniques.
While not as widely recognized as some other malware analysis tools, Pepper is
appreciated for its simplicity and specific utility in handling PE (Portable Executable)
file analysis, a file format commonly used for Windows executables.

Pepper is designed to be a static analysis tool that automates the extraction of useful
information from potentially obfuscated binaries. It is especially helpful for examining
packed or encrypted executables, which often hide their true functionality in order to
avoid detection by security software.

Key Features of Pepper

1.​ PE File Analysis: Pepper is specifically built for analyzing PE files. These are
the standard file format for executables, object code, and DLLs in Windows. It
helps analysts understand the structure of these files.

2.​ Obfuscated Code Detection: Pepper can detect obfuscation techniques that are
used by malware authors to hide malicious code from traditional signature-based

detection methods. This can include detection of packed binaries or encrypted
code sections.

3.​ Static Analysis: Pepper works by analyzing the binary's structure and
extracting strings and other embedded information without executing the file.
This makes it a safe option when analyzing suspicious or untrusted binaries.

4.​ Extraction of Strings and Resources: Pepper can extract useful strings from a
binary, including URLs, IP addresses, file paths, or other critical data that may
indicate malicious activity.

5.​ Support for Multiple Obfuscation Techniques: Pepper is useful for identifying
and handling a variety of obfuscation methods, such as packers, obfuscators,
or simple encryption schemes.

6.​ Integration with Other Tools: While it can be used independently, Pepper may
be used as part of a broader malware analysis toolkit in combination with other
tools like disassemblers, decompilers, or dynamic analysis sandboxes.

7.​ Open Source: Pepper is open-source software, making it freely available for
use, and allowing users to inspect or modify the code as needed.

—--

Self Development Tools

import pefile​
​
Load the PE file​
pe = pefile.PE("malware.exe")​
​
Function to extract strings from sections of the binary​
def extract_strings(pe):​
​ strings = []​
​ for section in pe.sections:​
 ​ section_data = section.get_data()​
 ​ # Extract printable ASCII strings from the section data​
 ​ for i in range(len(section_data)):​
 ​ if section_data[i:i+4].isalpha():​
 ​ string = section_data[i:i+4].decode("utf-8")​
 ​ strings.append(string)​

​ return strings​
​
Extract strings from the PE file​
strings = extract_strings(pe)​
for string in strings:​
​ print(f"Extracted string: {string}")

—--

LIEF (Library to Instrument Executable Formats) is an open-source C++ library with
Python bindings designed to handle Executable Formats such as PE (Portable
Executable), ELF (Executable and Linkable Format), Mach-O, and DEX (Dalvik
Executable) files. It is widely used in malware analysis and reverse engineering for
binary analysis tasks. The library allows you to parse, modify, and analyze binary
executables, which makes it an excellent tool for detecting malicious indicators in
executable files.

In the context of malware analysis, malicious indicators typically refer to behaviors,
patterns, or characteristics within a binary that may suggest that it is malware. These
indicators can include suspicious sections, strings, headers, imports, exports, or file
characteristics that deviate from normal, benign executables.

—--

If we are almost sure that the file is corrupted, we go to the Ghidra or Radare 2
software.

	Key Features of ExifTool:
	
	Common File Signatures:
	1. Windows Executable Files (.exe)
	2. JPEG Image (.jpg, .jpeg)
	3. PNG Image (.png)
	4. GIF Image (.gif)
	5. PDF Document (.pdf)
	6. ZIP Archive (.zip)
	7. MP3 Audio File (.mp3)
	8. Microsoft Word Document (.doc)
	9. Microsoft Word Document (.docx)

	How to View a File Signature:
	Using File Hashes to Detect Malicious Files
	a. Compare Hash with Known Malicious Hashes
	Example of checking file hashes against VirusTotal:
	b. Hash Databases:

	Key Features of ClamAV:
	Key Features of Maldet:
	Key Features of YARA
	Key Features of CAPA
	Key Features of Foremost:
	Key Features of FLOSS:
	Key Features of Pepper

